On uniform correlation structure

Daniel Klein and Ivan Žežula

Institute of Mathematics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovak Republic {daniel.klein,ivan.zezula}@upjs.sk

Abstract

We consider the growth curve model of the form Y = XBZ + e, Ee = 0, $var(e) = \Sigma \otimes I$, with $\Sigma = \sigma^2((1 - \rho)I + \rho \mathbf{11}')$, where σ^2 and ρ are unknown covariance components (this structure is known as uniform correlation structure). The distribution of the estimator of ρ is difficult to tackle, however, using similar transformation to Fisher Z-transformation the asymptotic normality can be achieved. This asymptotic normality is shown using U-statistics theory.

Keywords: Growth curve model, asymptotic normality, U-statistics

1 INTRODUCTION

Throughout this paper the following notations will be used:

- \bullet sign \otimes denotes the Kronecker product of matrices,
- the vec operator makes column vector from any matrix column-wise,
- the vech operator is a generalization of vec operator for symmetric matrices which stacks the on or below diagonal elements of matrix into a column vector,
- $M_X = I X(X'X)^- X'$ is the matrix of the orthogonal projection onto the orthogonal complement of the column space of matrix X,
- T_p is the matrix which for any symmetric matrix $X_{p \times p}$ transforms vec(X) into vech(X), i. e. $\text{vech}(X) = T_p \text{vec}(X)$,
- K_p is the commutation matrix of the type $p^2 \times p^2$ (for details see [4]),
- $\mathbf{1}_p$ is the p-variate vector with all the elements equal to 1,
- J_p is the matrix with all the elements equal to 1, i.e. $J_p = \mathbf{1}_p \mathbf{1}'_p$.

Let us consider the common form of the growth curve model

$$Y = XBZ + e$$
, $\to e = 0$, $Var(vec e) = \Sigma \otimes I$, (1)

where $Y_{n\times p}$ is a matrix of (independent) p-dimensional observations, $X_{n\times m}$ and $Z_{r\times p}$ are known design matrices (X is an ANOVA design matrix and Z is a matrix of regression constants), $B_{m\times r}$ is a matrix of the first order parameters, $e_{n\times p}$ is an error matrix and Σ is a matrix of the unknown second order parameters.

There is no problem estimating Σ when it is completely unknown. Under normality, its uniformly minimum variance unbiased invariant estimator (UMVUE) is

$$\hat{\Sigma}_n = \frac{1}{n - r(X)} Y' M_X Y,\tag{2}$$

Problems arise in situations when the structure is partially known. One of the most common structures is the uniform correlation structure:

$$\Sigma = \sigma^2((1-\rho)I_p + \rho \mathbf{1}_p \mathbf{1}_p').$$

where $\sigma^2 > 0$ and $\rho \in \left\langle -\frac{1}{p-1}, 1 \right\rangle$ are unknown parameters. Žežula [6] introduced simple estimators of both parameters based on (2):

$$\hat{\sigma}_S^2 = \frac{\text{Tr}(\hat{\Sigma})}{p},$$

$$\hat{\rho}_S = \frac{1}{p-1} \left(\frac{\mathbf{1}'\hat{\Sigma}\mathbf{1}}{\text{Tr}(\hat{\Sigma})} - 1 \right).$$

Although both estimators are based on unbiased estimating equations, the estimator $\hat{\rho}_S$ is biased, and the boundaries are $-\frac{1}{p-1} \leq \hat{\rho}_S \leq 1$. Its distribution is difficult to tackle. However, using the transformation

$$Z_n = \frac{1}{2} \ln \left(\frac{\frac{1}{p-1} + \hat{\rho}_S}{1 - \hat{\rho}_S} \right), \tag{3}$$

asymptotic normality can be achieved.

2 U-STATISTICS FOR $VECH(\Sigma)$

Let $Y_1^1,\ldots,Y_{n_1}^1,Y_1^2,\ldots,Y_{n_2}^2,\ldots,Y_1^m,\ldots,Y_{n_m}^m$ be the p-variate independent and normally distributed random vectors with $\mathrm{E}(Y_i^j)=\mu^j$ and $\mathrm{Var}(Y_i^j)=\Sigma,\ j=1,\ldots,m,$ $i=1,\ldots,n_j.$ Let $n=\sum_{j=1}^m n_j.$ Then the matrix Y from the model (1) can be written as

$$Y = (Y_1^1, \dots, Y_{n_1}^1, \dots, Y_1^m, \dots, Y_{n_m}^m)'. \tag{4}$$

According to theory of generalized U-statistics [3] consider the kernel of degree $(2, \ldots, 2)$

$$h(Y_1^1, Y_2^1, \dots, Y_1^m, Y_2^m) = \frac{1}{2m} \left(\text{vech} \left[(Y_1^1 - Y_2^1)(Y_1^1 - Y_2^1)' \right] + \dots + \text{vech} \left[(Y_1^m - Y_2^m)(Y_1^m - Y_2^m)' \right] \right).$$

Then $\operatorname{E} h(Y_1^1,Y_2^1,\ldots,Y_1^m,Y_2^m) = \operatorname{vech}(\Sigma)$ and the U-statistics for $\operatorname{vech}(\Sigma)$ is

$$U_n = \frac{1}{\binom{n_1}{2} \cdots \binom{n_m}{2}} \sum_{\substack{1 \le \beta_1^1 < \beta_2^1 \le n_1 \\ \cdots \\ 1 \le \beta_1^m < \beta_2^m \le n_m}} h(Y_{\beta_1^1}^1, Y_{\beta_2^1}^1, \dots, Y_{\beta_1^m}^m, Y_{\beta_2^m}^m).$$

After short calculation this statistics can be written in the equivalent form

$$U_{n} = \frac{1}{m(n_{1} - 1)} \sum_{i=1}^{n_{1}} \operatorname{vech} \left[(Y_{i}^{1} - \bar{Y}^{1})(Y_{i}^{1} - \bar{Y}^{1})' \right] + \dots +$$

$$+ \frac{1}{m(n_{m} - 1)} \sum_{i=1}^{n_{m}} \operatorname{vech} \left[(Y_{i}^{m} - \bar{Y}^{m})(Y_{i}^{m} - \bar{Y}^{m})' \right],$$

$$(5)$$

where $\bar{Y}^j = \frac{1}{n_i} \sum_{i=1}^{n_j} Y_i^j$.

Define for $0 \le j_1 \le 2, \dots, 0 \le j_m \le 2$

$$h_{j_1...j_m}(Y_1^1, \dots, Y_{j_1}^1, \dots, Y_1^m, \dots, Y_{j_m}^m) =$$

$$= \mathbb{E}\left(h(Y_1^1, Y_2^1, \dots, Y_1^m, Y_2^m) | Y_1^1, \dots, Y_{j_1}^1, \dots, Y_{j_m}^m, \dots, Y_{j_m}^m\right),$$

and

$$\Psi_{j_1...j_m} = \text{Var}\left[h_{j_1...j_m}(Y_1^1,\ldots,Y_{j_1}^1,\ldots,Y_1^m,\ldots,Y_{j_m}^m)\right].$$

The following theorem describes the asymptotic distribution of the statistics U_n .

Theorem 1 Suppose that there exist constants p_1, \ldots, p_m in the interval (0,1) such that $n_j/n \to p_j$ for all j and that $\Psi_{2...2} < \infty$. Then

$$\sqrt{n} (U_n - \operatorname{vech}(\Sigma)) \xrightarrow{\mathcal{L}} N(0, \Gamma),$$

where

$$\Gamma = \frac{4}{p_1} \Psi_{10...00} + \dots + \frac{4}{p_m} \Psi_{00...01}$$

Proof.See [3].■

We can compute $\Psi_{0...1...0}$ (the index 1 is on the k-th place). First we need

$$\begin{split} h_{0...1...0}(Y_1^k) &= \mathbf{E}\left(h(Y_1^1,Y_2^1,\dots,Y_1^m,Y_2^m)|Y_1^k\right) = \\ &= \frac{1}{2m}\left[\sum_{\substack{j=1\\j\neq k}}^m \mathrm{vech}\left(\mathbf{E}\left((Y_1^j-Y_2^j)(Y_1^j-Y_2^j)'\right)\right) + \\ &\quad + \mathrm{vech}\left(\mathbf{E}\left((Y_1^k-Y_2^k)(Y_1^k-Y_2^k)'|Y_1^k\right)\right)\right] = \\ &= \frac{m-1}{m}\,\mathrm{vech}\left(\Sigma\right) + \frac{1}{2m}\,\mathrm{vech}\left(\mathbf{E}\left(((Y_1^k-\mu^k)-(Y_2^k-\mu^k))\right)\right) \end{split}$$

$$\times \left((Y_1^k - \mu^k) - (Y_2^k - \mu^k))' | Y_1^k \right) \right) = \frac{m-1}{m} \operatorname{vech}(\Sigma) +$$

$$+ \frac{1}{2m} \operatorname{vech}\left((Y_1^k - \mu^k)(Y_1^k - \mu^k)' \right) + \frac{1}{2m} \operatorname{vech}(\Sigma) =$$

$$= \left(1 - \frac{1}{2m} \right) \operatorname{vech}(\Sigma) + \frac{1}{2m} \operatorname{vech}\left((Y_1^k - \mu^k)(Y_1^k - \mu^k)' \right).$$

Then

$$\begin{split} \Psi_{0...1...0} &= \operatorname{Var}(h_{0...1...0}(Y_1^k)) = \\ &= \operatorname{Var}\left(\left(1 - \frac{1}{2m}\right)\operatorname{vech}(\Sigma) + \frac{1}{2m}\operatorname{vech}((Y_1^k - \mu^k)(Y_1^k - \mu^k)')\right) = \\ &= \frac{1}{4m^2}T_p(I_{p^2} + K_p)(\Sigma \otimes \Sigma)T_p'. \end{split}$$

This implies that

$$\Gamma = \frac{1}{m^2} \sum_{i=1}^m \frac{1}{p_i} T_p (I_{p^2} + K_p) (\Sigma \otimes \Sigma) T'_p.$$

3 ASYMPTOTIC EQUIVALENCE

The estimator $\hat{\Sigma}_n$ from (2) using (4) can be equivalently written in the form

$$\hat{\Sigma}_{n} = \frac{1}{n-m} \left(\sum_{i=1}^{n_{1}} (Y_{i}^{1} - \bar{Y}^{1})(Y_{i}^{1} - \bar{Y}^{1})' + \dots + \sum_{i=1}^{n_{m}} (Y_{i}^{m} - \bar{Y}^{m})(Y_{i}^{m} - \bar{Y}^{m})' \right).$$

$$(6)$$

Both estimators, U_n and $\operatorname{vech}(\hat{\Sigma}_n)$, are unbiased estimators of $\operatorname{vech}(\Sigma)$. The only difference is the constant by which each argument in the sum is multiplied.

Lemma 1 Let p_j be defined as in the Theorem 1. Then $\sqrt{n}(U_n - \text{vech}(\Sigma))$ and $\sqrt{n}(\text{vech}(\hat{\Sigma}_n) - \text{vech}(\Sigma))$ for U_n and $\hat{\Sigma}_n$ defined in (5) and (6) are asymptotically equivalent iff $p_j = 1/m$ for all j.

Proof. It suffices to show that

$$\mathrm{E}\left(\left\|\sqrt{n}(\mathrm{vech}(\hat{\Sigma}_n)-\mathrm{vech}(\Sigma))-\sqrt{n}(U_n-\mathrm{vech}(\Sigma))\right\|^2\right)\to 0.$$

Because both estimators are unbiased, it must hold $E(\operatorname{vech}(\hat{\Sigma}_n) - U_n) = 0$. Therefore

$$\begin{split} & \operatorname{E}\left(\left\|\sqrt{n}(\operatorname{vech}(\hat{\Sigma}_{n}) - \operatorname{vech}(\Sigma)) - \sqrt{n}(U_{n} - \operatorname{vech}(\Sigma))\right\|^{2}\right) = \\ & = n\operatorname{E}\left(\left\|\operatorname{vech}(\hat{\Sigma}_{n}) - U_{n}\right\|^{2}\right) = n\operatorname{E}\left[\left(\operatorname{vech}(\hat{\Sigma}_{n}) - U_{n}\right)'(\operatorname{vech}(\hat{\Sigma}_{n}) - U_{n})\right] = \\ & = n\operatorname{Tr}\left[\operatorname{E}((\operatorname{vech}(\hat{\Sigma}_{n}) - U_{n})(\operatorname{vech}(\hat{\Sigma}_{n}) - U_{n})')\right] = \\ & = n\operatorname{Tr}\left[\operatorname{Var}(\operatorname{vech}(\hat{\Sigma}_{n}) - U_{n}) + \operatorname{E}(\operatorname{vech}(\hat{\Sigma}_{n}) - U_{n})\operatorname{E}(\operatorname{vech}(\hat{\Sigma}_{n}) - U_{n})'\right] = \\ & = n\operatorname{Tr}\left[\operatorname{Var}(\operatorname{vech}(\hat{\Sigma}_{n}) - U_{n})\right] = \\ & = n\operatorname{Tr}\left[\operatorname{Var}(\operatorname{vech}(\hat{\Sigma}_{n}) + \operatorname{Var}(U_{n}) - 2\operatorname{Cov}(\operatorname{vech}(\hat{\Sigma}_{n}), U_{n})\right]. \end{split}$$

Now take the sum $\sum_{i=1}^{n_j} (Y_i^j - \bar{Y}^j)(Y_i^j - \bar{Y}^j)'$ for fixed j (such a sum is a part of both $\text{vech}(\hat{\Sigma}_n)$ and U_n). This sum has Wishart distribution $W_p(n_j - 1, \Sigma)$, so (see e.g. [5])

$$\operatorname{Var}\left(\operatorname{vech}\left(\sum_{i=1}^{n_{j}}(Y_{i}^{j}-\bar{Y}^{j})(Y_{i}^{j}-\bar{Y}^{j})'\right)\right) =$$

$$= \operatorname{Var}\left(T_{p}\operatorname{vec}\left(\sum_{i=1}^{n_{j}}(Y_{i}^{j}-\bar{Y}^{j})(Y_{i}^{j}-\bar{Y}^{j})'\right)\right) =$$

$$= 2(n_{j}-1)T_{p}(I_{p^{2}}+K_{p})(\Sigma\otimes\Sigma)T'_{p}.$$

Making use of independence of $\sum_{i=1}^{n_j} (Y_i^j - \bar{Y}^j)(Y_i^j - \bar{Y}^j)'$ for all j it is easily seen that

$$\operatorname{Var}(\operatorname{vech}(\hat{\Sigma}_n)) = \frac{2}{n-m} T_p(I_{p^2} + K_p)(\Sigma \otimes \Sigma) T'_p,$$

$$\operatorname{Var}(U_n) = \frac{2}{m^2} \sum_{j=1}^m \frac{1}{n_j - 1} T_p(I_{p^2} + K_p)(\Sigma \otimes \Sigma) T'_p,$$

and

$$Cov(\operatorname{vech}(\hat{\Sigma}_n), U_n) = \frac{2}{n-m} T_p(I_{p^2} + K_p)(\Sigma \otimes \Sigma) T'_p.$$

Then

$$E\left(\left\|\sqrt{n}(\operatorname{vech}(\hat{\Sigma}_n) - \operatorname{vech}(\Sigma)) - \sqrt{n}(U_n - \operatorname{vech}(\Sigma))\right\|^2\right) =$$

$$= \left(\frac{2n}{m^2} \sum_{j=1}^m \frac{1}{n_j - 1} - \frac{2n}{n - m}\right) \operatorname{Tr}\left[T_p(I_{p^2} + K_p)(\Sigma \otimes \Sigma)T_p'\right],$$

and

$$\lim_{n \to \infty} \mathbb{E}\left(\left\|\sqrt{n}(\operatorname{vech}(\hat{\Sigma}_n) - \operatorname{vech}(\Sigma)) - \sqrt{n}(U_n - \operatorname{vech}(\Sigma))\right\|^2\right) = \left(\frac{2}{m^2} \sum_{j=1}^m \frac{1}{p_j} - 2\right) \operatorname{Tr}\left[T_p(I_{p^2} + K_p)(\Sigma \otimes \Sigma)T_p'\right].$$

The last term is equal to 0 iff $p_j = 1/m$ for all j. This concludes the proof.

The following corollary follows from Theorem 1 and Lemma 1.

Corollary 1 Suppose that $n_j/n \to 1/m$ for all j and that $\Psi_{2...2} < \infty$. Then

$$\sqrt{n}\left(\operatorname{vech}(\hat{\Sigma}_n) - \operatorname{vech}(\Sigma)\right) \xrightarrow{\mathcal{L}} N(0,\Gamma),$$

where

$$\Gamma = T_p(I_{p^2} + K_p)(\Sigma \otimes \Sigma)T'_p.$$

4 ASYMPTOTIC NORMALITY OF $\hat{\rho}_S$

The statistics Z_n from (3) can be written as $Z_n = \varphi(\operatorname{vech}(\hat{\Sigma}_n))$, where for any symmetric matrix $A_{p \times p}$ is $\varphi(\operatorname{vech}(A)) = f(g(\operatorname{vech}(A)))$,

$$g(\operatorname{vech}(A)) = \frac{2}{p-1} \left[\frac{(\operatorname{vech}(J_p))' \operatorname{vech}(A)}{(\operatorname{vech}(I_p))' \operatorname{vech}(A)} - 1 \right],$$

and

$$f(x) = \frac{1}{2} \ln \left(\frac{\frac{1}{p-1} + x}{1 - x} \right).$$

Theorem 2 Suppose that $n_j/n \to 1/m$ for all j and that $\Psi_{2...2} < \infty$. Then

$$\sqrt{n} \left(Z_n - \varphi(\operatorname{vech}(\Sigma)) \right) \xrightarrow{\mathcal{L}} N(0, \gamma),$$

where

$$\gamma = d^2 \left(\operatorname{vech}(C_p) \right)' T_p (I_{p^2} + K_p) (\Sigma \otimes \Sigma) T_p' \operatorname{vech}(C_p),$$

and

$$d = \frac{1}{2\sigma^2} \cdot \frac{1}{[1 + (p-1)\rho](1-\rho)},$$

$$C_p = \frac{2}{p-1}J_p - \left(\frac{2}{p-1} + \rho\right)I_p.$$

Proof. Asymptotic normality is direct consequence of the Corollary 1 and the delta method. As for γ we have

$$\gamma = \left[\nabla \varphi(\operatorname{vech}(\Sigma))\right]' \Gamma \nabla \varphi(\operatorname{vech}(\Sigma)),$$

where symbol ∇ denotes the gradient of a function. For a symmetric matrix A is

$$\nabla \varphi(\operatorname{vech}(A)) = \left(\frac{\partial \varphi(\operatorname{vech}(A))}{\partial (\operatorname{vech}(A))'}\right)' = \left(\frac{\partial f(g(\operatorname{vech}(A)))}{\partial (\operatorname{vech}(A))'}\right)' =$$

$$= \left(\frac{\partial f(g(\operatorname{vech}(A)))}{\partial g(\operatorname{vech}(A))} \cdot \frac{\partial g(\operatorname{vech}(A))}{\partial (\operatorname{vech}(A))'}\right)' =$$

$$= \frac{p}{2\left[1 - g(\operatorname{vech}(A))\right]\left[1 + (p - 1)g(\operatorname{vech}(A))\right]} \left(\frac{\partial g(\operatorname{vech}(A))}{\partial (\operatorname{vech}(A))'}\right)'.$$

Let us now compute the last term (the fact that $(\operatorname{vech}(I_p))' \operatorname{vech}(A) = \operatorname{Tr}(A)$ will be used)

$$\frac{\partial g(\operatorname{vech}(A))}{\partial (\operatorname{vech}(A))'} = \frac{\partial}{\partial (\operatorname{vech}(A))'} \left[\frac{2}{p-1} \left(\frac{(\operatorname{vech}(J_p))' \operatorname{vech}(A)}{(\operatorname{vech}(I_p))' \operatorname{vech}(A)} - 1 \right) \right] =$$

$$= \frac{2}{p-1} \cdot \frac{[\operatorname{vech}(I_p)]' \operatorname{vech}(A)[\operatorname{vech}(J_p)]' - [\operatorname{vech}(J_p)]' \operatorname{vech}(A)[\operatorname{vech}(I_p)]'}{[(\operatorname{vech}(I_p))' \operatorname{vech}(A)]^2} =$$

$$= \frac{2}{(p-1)\operatorname{Tr}(A)} \left((\operatorname{vech}(J_p))' - (\operatorname{vech}(I_p))' \right) - \frac{g(\operatorname{vech}(A))}{\operatorname{Tr}(A)} (\operatorname{vech}(I_p))' =$$

$$= \frac{1}{\operatorname{Tr}(A)} (\operatorname{vech}(D_p(A)))',$$

where

$$D_p(A) = \frac{2}{p-1}J_p - \left(\frac{2}{p-1} + g(\operatorname{vech}(A))\right)I_p.$$

Then

$$\nabla \varphi(\operatorname{vech}(A)) = \frac{1}{2\operatorname{Tr}(A)[1 - g(\operatorname{vech}(A))][1 + (p - 1)g(\operatorname{vech}(A))]} \operatorname{vech}(D_p(A)).$$

Because $g(\operatorname{vech}(\Sigma)) = \rho$, $\operatorname{Tr}(\Sigma) = p\sigma^2$, and $D_p(\Sigma) = C_p$, we have

$$\nabla \varphi(\operatorname{vech}(\Sigma)) = \frac{p}{2\sigma^2[1 + (p-1)\rho](1-\rho)} \operatorname{vech}(C_p).$$

Then the result for γ follows.

REFERENCES

- [1] Ferguson, T. S., U-statistics, Notes for Statistics 200C, 2005.
- [2] Hawkins, D. L., Using *U* statistics to derive the asymptotic distribution of Fisher's *Z* statistic, The American Statistician, Vol. 43, No. 4, 235–237, 1989.
- [3] Lehmann, E. L., Elements of Large-Sample Theory, Springer, 1999.
- [4] Magnus, J. R. and Neudecker, H., Matrix differential calculus with applications in statistics and econometrics, John Wiley & Sons, Chichester, 1988.
- [5] Žežula, I., Covariance components estimation in the growth curve model, Statistics 24, 321–330, 1993.
- [6] Žežula, I., Special variance structures in the growth curve model, Journal of multivariate analysis, Vol. 97, No. 3, 606–618, 2006.