On uniform correlation structure

Daniel Klein and Ivan Žežula
Institute of Mathematics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovak Republic
\{daniel.klein,ivan.zezula\}@upjs.sk

Abstract

We consider the growth curve model of the form $Y=X B Z+e, \mathrm{E} e=0, \operatorname{var}(e)=\Sigma \otimes I$, with $\Sigma=\sigma^{2}\left((1-\rho) I+\rho \mathbf{1 1}^{\prime}\right)$, where σ^{2} and ρ are unknown covariance components (this structure is known as uniform correlation structure). The distribution of the estimator of ρ is difficult to tackle, however, using similar transformation to Fisher Z-transformation the asymptotic normality can be achieved. This asymptotic normality is shown using U-statistics theory.

Keywords: Growth curve model, asymptotic normality, U-statistics

1 INTRODUCTION

Throughout this paper the following notations will be used:

- $\operatorname{sign} \otimes$ denotes the Kronecker product of matrices,
- the vec operator makes column vector from any matrix column-wise,
- the vech operator is a generalization of vec operator for symmetric matrices which stacks the on or below diagonal elements of matrix into a column vector,
- $M_{X}=I-X\left(X^{\prime} X\right)^{-} X^{\prime}$ is the matrix of the orthogonal projection onto the orthogonal complement of the column space of matrix X,
- T_{p} is the matrix which for any symmetric matrix $X_{p \times p} \operatorname{transforms} \operatorname{vec}(X)$ into $\operatorname{vech}(X)$, i. e. $\operatorname{vech}(X)=T_{p} \operatorname{vec}(X)$,
- K_{p} is the commutation matrix of the type $p^{2} \times p^{2}$ (for details see [4]),
- $\mathbf{1}_{p}$ is the p -variate vector with all the elements equal to 1 ,
- J_{p} is the matrix with all the elements equal to 1, i.e. $J_{p}=\mathbf{1}_{p} \mathbf{1}_{p}^{\prime}$.

Let us consider the common form of the growth curve model

$$
\begin{equation*}
Y=X B Z+e, \mathrm{E} e=0, \quad \operatorname{Var}(\operatorname{vec} e)=\Sigma \otimes I, \tag{1}
\end{equation*}
$$

where $Y_{n \times p}$ is a matrix of (independent) p-dimensional observations, $X_{n \times m}$ and $Z_{r \times p}$ are known design matrices (X is an ANOVA design matrix and Z is a matrix of regression constants), $B_{m \times r}$ is a matrix of the first order parameters, $e_{n \times p}$ is an error matrix and Σ is a matrix of the unknown second order parameters.

There is no problem estimating Σ when it is completely unknown. Under normality, its uniformly minimum variance unbiased invariant estimator (UMVUE) is

$$
\begin{equation*}
\hat{\Sigma}_{n}=\frac{1}{n-r(X)} Y^{\prime} M_{X} Y \tag{2}
\end{equation*}
$$

Problems arise in situations when the structure is partially known. One of the most common structures is the uniform correlation structure:

$$
\Sigma=\sigma^{2}\left((1-\rho) I_{p}+\rho \mathbf{1}_{p} \mathbf{1}_{p}^{\prime}\right)
$$

where $\sigma^{2}>0$ and $\rho \in\left\langle-\frac{1}{p-1}, 1\right\rangle$ are unknown parameters. Žežula [6] introduced simple estimators of both parameters based on (2):

$$
\begin{gathered}
\hat{\sigma}_{S}^{2}=\frac{\operatorname{Tr}(\hat{\Sigma})}{p}, \\
\hat{\rho}_{S}=\frac{1}{p-1}\left(\frac{\mathbf{1}^{\prime} \hat{\Sigma} \mathbf{1}}{\operatorname{Tr}(\hat{\Sigma})}-1\right) .
\end{gathered}
$$

Although both estimators are based on unbiased estimating equations, the estimator $\hat{\rho}_{S}$ is biased, and the boundaries are $-\frac{1}{p-1} \leq \hat{\rho}_{S} \leq 1$. Its distribution is difficult to tackle. However, using the transformation

$$
\begin{equation*}
Z_{n}=\frac{1}{2} \ln \left(\frac{\frac{1}{p-1}+\hat{\rho}_{S}}{1-\hat{\rho}_{S}}\right), \tag{3}
\end{equation*}
$$

asymptotic normality can be achieved.

2 U-STATISTICS FOR $\operatorname{VECH}(\boldsymbol{\Sigma})$

Let $Y_{1}^{1}, \ldots, Y_{n_{1}}^{1}, Y_{1}^{2}, \ldots, Y_{n_{2}}^{2}, \ldots, Y_{1}^{m}, \ldots, Y_{n_{m}}^{m}$ be the p-variate independent and normally distributed random vectors with $\mathrm{E}\left(Y_{i}^{j}\right)=\mu^{j}$ and $\operatorname{Var}\left(Y_{i}^{j}\right)=\Sigma, j=1, \ldots, m$, $i=1, \ldots, n_{j}$. Let $n=\sum_{j=1}^{m} n_{j}$. Then the matrix Y from the model (1) can be written as

$$
\begin{equation*}
Y=\left(Y_{1}^{1}, \cdots, \quad Y_{n_{1}}^{1}, \cdots, \quad Y_{1}^{m}, \cdots, \quad Y_{n_{m}}^{m}\right)^{\prime} . \tag{4}
\end{equation*}
$$

According to theory of generalized U-statistics [3] consider the kernel of degree $(2, \ldots, 2)$

$$
\begin{aligned}
h\left(Y_{1}^{1}, Y_{2}^{1}, \ldots, Y_{1}^{m}, Y_{2}^{m}\right) & =\frac{1}{2 m}\left(\operatorname{vech}\left[\left(Y_{1}^{1}-Y_{2}^{1}\right)\left(Y_{1}^{1}-Y_{2}^{1}\right)^{\prime}\right]+\cdots\right. \\
& \left.\cdots+\operatorname{vech}\left[\left(Y_{1}^{m}-Y_{2}^{m}\right)\left(Y_{1}^{m}-Y_{2}^{m}\right)^{\prime}\right]\right) .
\end{aligned}
$$

Then $\mathrm{E} h\left(Y_{1}^{1}, Y_{2}^{1}, \ldots, Y_{1}^{m}, Y_{2}^{m}\right)=\operatorname{vech}(\Sigma)$ and the U-statistics for $\operatorname{vech}(\Sigma)$ is

$$
U_{n}=\frac{1}{\binom{n_{1}}{2} \ldots\binom{n_{m}}{2}} \sum_{\substack{1 \leq \beta_{1}^{1}<\beta_{2}^{1} \leq n_{1} \\ 1 \leq \beta_{1}^{m}<\beta_{2}^{m} \leq n_{m}}} h\left(Y_{\beta_{1}^{1}}^{1}, Y_{\beta_{2}^{1}}^{1}, \ldots, Y_{\beta_{1}^{m}}^{m}, Y_{\beta_{2}^{m}}^{m}\right) .
$$

After short calculation this statistics can be written in the equivalent form

$$
\begin{align*}
U_{n}= & \frac{1}{m\left(n_{1}-1\right)} \sum_{i=1}^{n_{1}} \operatorname{vech}\left[\left(Y_{i}^{1}-\bar{Y}^{1}\right)\left(Y_{i}^{1}-\bar{Y}^{1}\right)^{\prime}\right]+\cdots+ \\
& +\frac{1}{m\left(n_{m}-1\right)} \sum_{i=1}^{n_{m}} \operatorname{vech}\left[\left(Y_{i}^{m}-\bar{Y}^{m}\right)\left(Y_{i}^{m}-\bar{Y}^{m}\right)^{\prime}\right], \tag{5}
\end{align*}
$$

where $\bar{Y}^{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} Y_{i}^{j}$.

Define for $0 \leq j_{1} \leq 2, \ldots, 0 \leq j_{m} \leq 2$

$$
\begin{aligned}
& h_{j_{1} \ldots j_{m}}\left(Y_{1}^{1}, \ldots, Y_{j_{1}}^{1}, \ldots, Y_{1}^{m}, \ldots, Y_{j_{m}}^{m}\right)= \\
& \quad=\mathrm{E}\left(h\left(Y_{1}^{1}, Y_{2}^{1}, \ldots, Y_{1}^{m}, Y_{2}^{m}\right) \mid Y_{1}^{1}, \ldots, Y_{j_{1}}^{1}, \ldots, Y_{1}^{m}, \ldots, Y_{j_{m}}^{m}\right)
\end{aligned}
$$

and

$$
\Psi_{j_{1} \ldots j_{m}}=\operatorname{Var}\left[h_{j_{1} \ldots j_{m}}\left(Y_{1}^{1}, \ldots, Y_{j_{1}}^{1}, \ldots, Y_{1}^{m}, \ldots, Y_{j_{m}}^{m}\right)\right] .
$$

The following theorem describes the asymptotic distribution of the statistics U_{n}.
Theorem 1 Suppose that there exist constants p_{1}, \ldots, p_{m} in the interval $(0,1)$ such that $n_{j} / n \rightarrow p_{j}$ for all j and that $\Psi_{2 \ldots 2}<\infty$. Then

$$
\sqrt{n}\left(U_{n}-\operatorname{vech}(\Sigma)\right) \xrightarrow{\mathcal{L}} N(0, \Gamma),
$$

where

$$
\Gamma=\frac{4}{p_{1}} \Psi_{10 \ldots 00}+\cdots+\frac{4}{p_{m}} \Psi_{00 \ldots 01}
$$

Proof.See [3]
We can compute $\Psi_{0 \ldots 1 \ldots 0}$ (the index 1 is on the k-th place). First we need

$$
\begin{aligned}
& h_{0 \ldots 1 \ldots 0}\left(Y_{1}^{k}\right)= \\
& \qquad \begin{aligned}
& \mathrm{E}\left(h\left(Y_{1}^{1}, Y_{2}^{1}, \ldots, Y_{1}^{m}, Y_{2}^{m}\right) \mid Y_{1}^{k}\right)= \\
&= \frac{1}{2 m}\left[\sum_{\substack{j=1 \\
j \neq k}}^{m} \operatorname{vech}\left(\mathrm{E}\left(\left(Y_{1}^{j}-Y_{2}^{j}\right)\left(Y_{1}^{j}-Y_{2}^{j}\right)^{\prime}\right)\right)+\right. \\
&\left.\quad+\operatorname{vech}\left(\mathrm{E}\left(\left(Y_{1}^{k}-Y_{2}^{k}\right)\left(Y_{1}^{k}-Y_{2}^{k}\right)^{\prime} \mid Y_{1}^{k}\right)\right)\right]= \\
&= \frac{m-1}{m} \operatorname{vech}(\Sigma)+\frac{1}{2 m} \operatorname{vech}\left(\mathrm { E } \left(\left(\left(Y_{1}^{k}-\mu^{k}\right)-\left(Y_{2}^{k}-\mu^{k}\right)\right) \times\right.\right. \\
&\left.\left.\quad \times\left(\left(Y_{1}^{k}-\mu^{k}\right)-\left(Y_{2}^{k}-\mu^{k}\right)\right)^{\prime} \mid Y_{1}^{k}\right)\right)=\frac{m-1}{m} \operatorname{vech}(\Sigma)+ \\
& \quad+\frac{1}{2 m} \operatorname{vech}\left(\left(Y_{1}^{k}-\mu^{k}\right)\left(Y_{1}^{k}-\mu^{k}\right)^{\prime}\right)+\frac{1}{2 m} \operatorname{vech}(\Sigma)= \\
&=\left(1-\frac{1}{2 m}\right) \operatorname{vech}(\Sigma)+\frac{1}{2 m} \operatorname{vech}\left(\left(Y_{1}^{k}-\mu^{k}\right)\left(Y_{1}^{k}-\mu^{k}\right)^{\prime}\right) .
\end{aligned}
\end{aligned}
$$

Then

$$
\begin{aligned}
\Psi_{0 \ldots 1 \ldots 0}= & \operatorname{Var}\left(h_{0 \ldots 11 \ldots 0}\left(Y_{1}^{k}\right)\right)= \\
& =\operatorname{Var}\left(\left(1-\frac{1}{2 m}\right) \operatorname{vech}(\Sigma)+\frac{1}{2 m} \operatorname{vech}\left(\left(Y_{1}^{k}-\mu^{k}\right)\left(Y_{1}^{k}-\mu^{k}\right)^{\prime}\right)\right)= \\
& =\frac{1}{4 m^{2}} T_{p}\left(I_{p^{2}}+K_{p}\right)(\Sigma \otimes \Sigma) T_{p}^{\prime} .
\end{aligned}
$$

This implies that

$$
\Gamma=\frac{1}{m^{2}} \sum_{i=1}^{m} \frac{1}{p_{i}} T_{p}\left(I_{p^{2}}+K_{p}\right)(\Sigma \otimes \Sigma) T_{p}^{\prime} .
$$

3 ASYMPTOTIC EQUIVALENCE

The estimator $\hat{\Sigma}_{n}$ from (2) using (4) can be equivalently written in the form

$$
\begin{align*}
\hat{\Sigma}_{n}= & \frac{1}{n-m}\left(\sum_{i=1}^{n_{1}}\left(Y_{i}^{1}-\bar{Y}^{1}\right)\left(Y_{i}^{1}-\bar{Y}^{1}\right)^{\prime}+\cdots+\right. \\
& \left.+\sum_{i=1}^{n_{m}}\left(Y_{i}^{m}-\bar{Y}^{m}\right)\left(Y_{i}^{m}-\bar{Y}^{m}\right)^{\prime}\right) . \tag{6}
\end{align*}
$$

Both estimators, U_{n} and vech $\left(\hat{\Sigma}_{n}\right)$, are unbiased estimators of vech (Σ). The only difference is the constant by which each argument in the sum is multiplied.

Lemma 1 Let p_{j} be defined as in the Theorem 1. Then $\sqrt{n}\left(U_{n}-\operatorname{vech}(\Sigma)\right)$ and $\sqrt{n}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-\right.$ $\operatorname{vech}(\Sigma)$) for U_{n} and $\hat{\Sigma}_{n}$ defined in (5) and (6) are asymptotically equivalent iff $p_{j}=1 / m$ for all j.

Proof. It suffices to show that

$$
\mathrm{E}\left(\left\|\sqrt{n}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-\operatorname{vech}(\Sigma)\right)-\sqrt{n}\left(U_{n}-\operatorname{vech}(\Sigma)\right)\right\|^{2}\right) \rightarrow 0 .
$$

Because both estimators are unbiased, it must hold $\mathrm{E}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-U_{n}\right)=0$. Therefore

$$
\begin{aligned}
\mathrm{E} & \left(\left\|\sqrt{n}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-\operatorname{vech}(\Sigma)\right)-\sqrt{n}\left(U_{n}-\operatorname{vech}(\Sigma)\right)\right\|^{2}\right)= \\
& =n \mathrm{E}\left(\left\|\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-U_{n}\right\|^{2}\right)=n \mathrm{E}\left[\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-U_{n}\right)^{\prime}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-U_{n}\right)\right]= \\
& =n \operatorname{Tr}\left[\mathrm{E}\left(\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-U_{n}\right)\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-U_{n}\right)^{\prime}\right)\right]= \\
& =n \operatorname{Tr}\left[\operatorname{Var}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-U_{n}\right)+\mathrm{E}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-U_{n}\right) \mathrm{E}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-U_{n}\right)^{\prime}\right]= \\
& =n \operatorname{Tr}\left[\operatorname{Var}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-U_{n}\right)\right]= \\
& =n \operatorname{Tr}\left[\operatorname{Var}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)+\operatorname{Var}\left(U_{n}\right)-2 \operatorname{Cov}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right), U_{n}\right)\right] .\right.
\end{aligned}
$$

Now take the sum $\sum_{i=1}^{n_{j}}\left(Y_{i}^{j}-\bar{Y}^{j}\right)\left(Y_{i}^{j}-\bar{Y}^{j}\right)^{\prime}$ for fixed j (such a sum is a part of both $\operatorname{vech}\left(\hat{\Sigma}_{n}\right)$ and $\left.U_{n}\right)$. This sum has Wishart distribution $W_{p}\left(n_{j}-1, \Sigma\right)$, so (see e.g. [5])

$$
\begin{gathered}
\operatorname{Var}\left(\operatorname{vech}\left(\sum_{i=1}^{n_{j}}\left(Y_{i}^{j}-\bar{Y}^{j}\right)\left(Y_{i}^{j}-\bar{Y}^{j}\right)^{\prime}\right)\right)= \\
=\operatorname{Var}\left(T_{p} \operatorname{vec}\left(\sum_{i=1}^{n_{j}}\left(Y_{i}^{j}-\bar{Y}^{j}\right)\left(Y_{i}^{j}-\bar{Y}^{j}\right)^{\prime}\right)\right)= \\
=2\left(n_{j}-1\right) T_{p}\left(I_{p^{2}}+K_{p}\right)(\Sigma \otimes \Sigma) T_{p}^{\prime} .
\end{gathered}
$$

Making use of independence of $\sum_{i=1}^{n_{j}}\left(Y_{i}^{j}-\bar{Y}^{j}\right)\left(Y_{i}^{j}-\bar{Y}^{j}\right)^{\prime}$ for all j it is easily seen that

$$
\begin{aligned}
& \operatorname{Var}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)\right)=\frac{2}{n-m} T_{p}\left(I_{p^{2}}+K_{p}\right)(\Sigma \otimes \Sigma) T_{p}^{\prime}, \\
& \operatorname{Var}\left(U_{n}\right)=\frac{2}{m^{2}} \sum_{j=1}^{m} \frac{1}{n_{j}-1} T_{p}\left(I_{p^{2}}+K_{p}\right)(\Sigma \otimes \Sigma) T_{p}^{\prime},
\end{aligned}
$$

and

$$
\operatorname{Cov}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right), U_{n}\right)=\frac{2}{n-m} T_{p}\left(I_{p^{2}}+K_{p}\right)(\Sigma \otimes \Sigma) T_{p}^{\prime}
$$

Then

$$
\begin{aligned}
& \mathrm{E}\left(\left\|\sqrt{n}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-\operatorname{vech}(\Sigma)\right)-\sqrt{n}\left(U_{n}-\operatorname{vech}(\Sigma)\right)\right\|^{2}\right)= \\
&=\left(\frac{2 n}{m^{2}} \sum_{j=1}^{m} \frac{1}{n_{j}-1}-\frac{2 n}{n-m}\right) \operatorname{Tr}\left[T_{p}\left(I_{p^{2}}+K_{p}\right)(\Sigma \otimes \Sigma) T_{p}^{\prime}\right],
\end{aligned}
$$

and

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \mathrm{E}\left(\left\|\sqrt{n}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-\operatorname{vech}(\Sigma)\right)-\sqrt{n}\left(U_{n}-\operatorname{vech}(\Sigma)\right)\right\|^{2}\right)= \\
=\left(\frac{2}{m^{2}} \sum_{j=1}^{m} \frac{1}{p_{j}}-2\right) \operatorname{Tr}\left[T_{p}\left(I_{p^{2}}+K_{p}\right)(\Sigma \otimes \Sigma) T_{p}^{\prime}\right]
\end{gathered}
$$

The last term is equal to 0 iff $p_{j}=1 / m$ for all j. This concludes the proof.
The following corollary follows from Theorem 1 and Lemma 1.
Corollary 1 Suppose that $n_{j} / n \rightarrow 1 / m$ for all j and that $\Psi_{2 \ldots 2}<\infty$. Then

$$
\sqrt{n}\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)-\operatorname{vech}(\Sigma)\right) \xrightarrow{\mathcal{L}} N(0, \Gamma),
$$

where

$$
\Gamma=T_{p}\left(I_{p^{2}}+K_{p}\right)(\Sigma \otimes \Sigma) T_{p}^{\prime} .
$$

4 ASYMPTOTIC NORMALITY OF $\hat{\rho}_{S}$

The statistics Z_{n} from (3) can be written as $Z_{n}=\varphi\left(\operatorname{vech}\left(\hat{\Sigma}_{n}\right)\right)$, where for any symmetric matrix $A_{p \times p}$ is $\varphi(\operatorname{vech}(A))=f(g(\operatorname{vech}(A)))$,

$$
g(\operatorname{vech}(A))=\frac{2}{p-1}\left[\frac{\left(\operatorname{vech}\left(J_{p}\right)\right)^{\prime} \operatorname{vech}(A)}{\left(\operatorname{vech}\left(I_{p}\right)\right)^{\prime} \operatorname{vech}(A)}-1\right],
$$

and

$$
f(x)=\frac{1}{2} \ln \left(\frac{\frac{1}{p-1}+x}{1-x}\right) .
$$

Theorem 2 Suppose that $n_{j} / n \rightarrow 1 / m$ for all j and that $\Psi_{2 \ldots .2}<\infty$. Then

$$
\sqrt{n}\left(Z_{n}-\varphi(\operatorname{vech}(\Sigma))\right) \xrightarrow{\mathcal{L}} N(0, \gamma),
$$

where

$$
\gamma=d^{2}\left(\operatorname{vech}\left(C_{p}\right)\right)^{\prime} T_{p}\left(I_{p^{2}}+K_{p}\right)(\Sigma \otimes \Sigma) T_{p}^{\prime} \operatorname{vech}\left(C_{p}\right)
$$

and

$$
\begin{aligned}
d & =\frac{1}{2 \sigma^{2}} \cdot \frac{1}{[1+(p-1) \rho](1-\rho)} \\
C_{p} & =\frac{2}{p-1} J_{p}-\left(\frac{2}{p-1}+\rho\right) I_{p}
\end{aligned}
$$

Proof. Asymptotic normality is direct consequence of the Corollary 1 and the delta method. As for γ we have

$$
\gamma=[\nabla \varphi(\operatorname{vech}(\Sigma))]^{\prime} \Gamma \nabla \varphi(\operatorname{vech}(\Sigma))
$$

where symbol ∇ denotes the gradient of a function. For a symmetric matrix A is

$$
\begin{gathered}
\nabla \varphi(\operatorname{vech}(A))=\left(\frac{\partial \varphi(\operatorname{vech}(A))}{\partial(\operatorname{vech}(A))^{\prime}}\right)^{\prime}=\left(\frac{\partial f(g(\operatorname{vech}(A)))}{\partial(\operatorname{vech}(A))^{\prime}}\right)^{\prime}= \\
=\left(\frac{\partial f(g(\operatorname{vech}(A)))}{\partial g(\operatorname{vech}(A))} \cdot \frac{\partial g(\operatorname{vech}(A))}{\partial(\operatorname{vech}(A))^{\prime}}\right)^{\prime}= \\
= \\
\frac{p}{2[1-g(\operatorname{vech}(A))][1+(p-1) g(\operatorname{vech}(A))]}\left(\frac{\partial g(\operatorname{vech}(A))}{\partial(\operatorname{vech}(A))^{\prime}}\right)^{\prime} .
\end{gathered}
$$

Let us now compute the last term (the fact that $\left(\operatorname{vech}\left(I_{p}\right)\right)^{\prime} \operatorname{vech}(A)=\operatorname{Tr}(A)$ will be used)

$$
\begin{gathered}
\quad \frac{\partial g(\operatorname{vech}(A))}{\partial(\operatorname{vech}(A))^{\prime}}=\frac{\partial}{\partial(\operatorname{vech}(A))^{\prime}}\left[\frac{2}{p-1}\left(\frac{\left(\operatorname{vech}\left(J_{p}\right)\right)^{\prime} \operatorname{vech}(A)}{\left(\operatorname{vech}\left(I_{p}\right)\right)^{\prime} \operatorname{vech}(A)}-1\right)\right]= \\
= \\
=\frac{2}{p-1} \cdot \frac{\left[\operatorname{vech}\left(I_{p}\right)\right]^{\prime} \operatorname{vech}(A)\left[\operatorname{vech}\left(J_{p}\right)\right]^{\prime}-\left[\operatorname{vech}\left(J_{p}\right)\right]^{\prime} \operatorname{vech}(A)\left[\operatorname{vech}\left(I_{p}\right)\right]^{\prime}}{\left[\left(\operatorname{vech}\left(I_{p}\right)\right)^{\prime} \operatorname{vech}(A)\right]^{2}}= \\
= \\
\frac{2}{(p-1) \operatorname{Tr}(A)}\left(\left(\operatorname{vech}\left(J_{p}\right)\right)^{\prime}-\left(\operatorname{vech}\left(I_{p}\right)\right)^{\prime}\right)-\frac{g(\operatorname{vech}(A))}{\operatorname{Tr}(A)}\left(\operatorname{vech}\left(I_{p}\right)\right)^{\prime}= \\
=\frac{1}{\operatorname{Tr}(A)}\left(\operatorname{vech}\left(D_{p}(A)\right)\right)^{\prime}
\end{gathered}
$$

where

$$
D_{p}(A)=\frac{2}{p-1} J_{p}-\left(\frac{2}{p-1}+g(\operatorname{vech}(A))\right) I_{p}
$$

Then

$$
\nabla \varphi(\operatorname{vech}(A))=\frac{1}{2 \operatorname{Tr}(A)[1-g(\operatorname{vech}(A))][1+(p-1) g(\operatorname{vech}(A))]} \operatorname{vech}\left(D_{p}(A)\right)
$$

Because $g(\operatorname{vech}(\Sigma))=\rho, \operatorname{Tr}(\Sigma)=p \sigma^{2}$, and $D_{p}(\Sigma)=C_{p}$, we have

$$
\nabla \varphi(\operatorname{vech}(\Sigma))=\frac{p}{2 \sigma^{2}[1+(p-1) \rho](1-\rho)} \operatorname{vech}\left(C_{p}\right)
$$

Then the result for γ follows.

REFERENCES

[1] Ferguson, T. S., U-statistics, Notes for Statistics 200C, 2005.
[2] Hawkins, D. L., Using U statistics to derive the asymptotic distribution of Fisher's Z statistic, The American Statistician, Vol. 43, No. 4, 235-237, 1989.
[3] Lehmann, E. L., Elements of Large-Sample Theory, Springer, 1999.
[4] Magnus, J. R. and Neudecker, H., Matrix differential calculus with applications in statistics and econometrics, John Wiley \& Sons, Chichester, 1988.
[5] Žežula, I., Covariance components estimation in the growth curve model, Statistics 24, 321-330, 1993.
[6] Žežula, I., Special variance structures in the growth curve model, Journal of multivariate analysis, Vol. 97, No. 3, 606-618, 2006.

