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Abstract

We consider the growth curve model of the foorm Y = XBZ 4+ e, Ee =0, var(e) =X ® I,
with ¥ = 02((1 — p)I + p11’), where 02 and p are unknown covariance components (this
structure is known as uniform correlation structure). The distribution of the estimator of
p is difficult to tackle, however, using similar transformation to Fisher Z-transformation
the asymptotic normality can be achieved. This asymptotic normality is shown using
U-statistics theory.
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1 INTRODUCTION
Throughout this paper the following notations will be used:
e sign ® denotes the Kronecker product of matrices,
e the vec operator makes column vector from any matrix column-wise,

e the vech operator is a generalization of vec operator for symmetric matrices which
stacks the on or below diagonal elements of matrix into a column vector,

o Mx =T—X(X'X)™ X’is the matrix of the orthogonal projection onto the orthogonal
complement of the column space of matrix X,

e T, is the matrix which for any symmetric matrix X, transforms vec(X) into
vech(X), i. e. vech(X) = T}, vec(X),

e K, is the commutation matrix of the type p? x p? (for details see [4]),

e 1, is the p-variate vector with all the elements equal to 1,

e J, is the matrix with all the elements equal to 1, i.e. J, = lplg.
Let us consider the common form of the growth curve model
Y=XBZ+e,Ee=0, Var(vece)=X®I, (1)

where Y),x, is a matrix of (independent) p-dimensional observations, X, xy, and Z,,, are
known design matrices (X is an ANOVA design matrix and Z is a matrix of regression
constants), By, x, is a matrix of the first order parameters, e, x, is an error matrix and
is a matrix of the unknown second order parameters.
There is no problem estimating ¥ when it is completely unknown. Under normality,
its uniformly minimum variance unbiased invariant estimator (UMVUE) is
S, = — L VMY, (2)
" n—r(X) X5
Problems arise in situations when the structure is partially known. Omne of the most
common structures is the uniform correlation structure:

S=0’((1- p)Ip + Plplé)-
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1

where 02 > 0 and p € <—ﬁ, 1> are unknown parameters. Zezula [6] introduced simple

estimators of both parameters based on (2):
()

~2
O'S: s
p

. 1 (131
ps = —- ——1].
p—1\Tr ()
Although both estimators are based on unbiased estimating equations, the estimator pg

is biased, and the boundaries are _1% < ps < 1. Its distribution is difficult to tackle.
However, using the transformation

1 ~
1 =1 tPs
o (22). .

1—ps

asymptotic normality can be achieved.

2 U-STATISTICS FOR VECH(X)

Let Yll, .. .,Ynll,Yf, . ,Yni, LYY be the p-variate independent and nor-
mally distributed random vectors with E(YY) = x/ and Var(Y/) = %, j = 1,...,m,
i=1,....n;. Let n =737 n;. Then the matrix Y from the model (1) can be written as

Y=Y o, VLo Y, anfn),~ (4)

According to theory of generalized U-statistics [3] consider the kernel of degree (2, .. .,2)

1
h(YII, }/21, ey Ylm, ng) — % (VeCh [(Yll _ YQI)(Y'll _ Y21)/] 4.
<+ vech [(V" —Y5")(Y" = Y5")])

Then EA(Y{,Ye, ..., Y, Y3") = vech(¥) and the U-statistics for
vech(X) is
1 1 1 m m

1<Bt <y <m

1< 87" < By < nm

After short calculation this statistics can be written in the equivalent form
1 - 1 ylyyl _ 1y
U :m(m_l);vech (G =YY = VY] 4+ +
1 = m M m v/
+m(nm_1);vech (v —Yy™)(ym —-Ymy],

vi— LSy
where Y7 = n Y Y
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Define for 0 < j; < 2,...,0 < j,, <2

By (Y1 Y Y™ YY) =

? 0 Im
:E(h(Yll,Y21,...,Ylm,}gm)|Y11,...,lel,...,Ylm,...,YjZ),
and
Uj, . jm = Var [hj, . (Y],..., Y} I CLRNN CO1F

’ 10

The following theorem describes the asymptotic distribution of the statistics U,.

Theorem 1 Suppose that there exist constants pi,...,pm in the interval (0,1) such that
nj/n — p; for all j and that ¥y o < co. Then

Vi (U, — vech()) & N(0,T),

where
4 4
I'= ]71‘1’10...00 + -+ —¥oo..01

m

Proof.See [3].m

hO‘..lA..O(Ylk) =E (h(}/lla Y217 s 7Y1m7 YQm)D/lk> =

= i ivech (E <(Y1j - YQJ)(Ylj - YQ]Y)) +

ik
+vech (B (v} = vF) (v - v V) ) | =

= "L vech () 4 5 veeh (B (v — %) — (v — %) x

Then
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This implies that

/
m2zpl Le + Kp) (S ® X)T),

3 ASYMPTOTIC EQUIVALENCE

The estimator 3, from (2) using (4) can be equivalently written in the form

ni

i=1 (6)

+Z Ym)>

Both estimators, U,, and vech(3,,), are unbiased estimators of vech(X). The only difference
is the constant by which each argument in the sum is multiplied.

Lemma 1 Letp; be defined as in the Theorem 1. Then \/n(U,—vech(X)) and Vn(vech(2,)—
vech(X)) for U, and 3, defined in (5) and (6) are asymptotically equivalent iff pj =1/m
for all 3.

Proof. It suffices to show that
E (H\/ﬁ(vech(f)n) — vech(E)) — va(U, — vech(S))]| )
Because both estimators are unbiased, it must hold E(vech(3,) — U,) = 0. Therefore

B ([|v/a(vech(Sn) — vech(S)) — v/(Uy — vech(8))[*) =
—nE(HveCh — U ) nE [(vech( n) — Uyn) (vech(%,

M>
|
=
|

—nTr _E((vech( ) — Un) (vech(S,) — Un)')} -

= nTr :Var(vech(fln) —U,) + E(vech(Sh) — Uy) E(vech(Sy) — Un)’} -

=nTr :Var(vech(in) - Un)}

=nTr _Var(vech(in) + Var(Uy,) — 2 Cov(vech(S,), Un)} .

Now take the sum Y7, (Y; Y/ Yj)(Yj Y7) for fixed j (such a sum is a part of both
vech(3,,) and U,). This sum has Wishart distribution Wy(n; — 1,%), so (see e.g. [5])

Var (vech (i(Yzj - }_’j)(Y;j — Yj)’>> =

i=1

= Var (Tp vec (Zj:(Yij — Y)Y — 170’)) -

=1
— 2(n; — VTy(I2 + K,)(Z @ )T
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Making use of independence of 3.7, (V/ YJ)(Y — Y7 for all j it is easily seen that

Var(vech(Xp)) = —— Ty(I» + K)(Z @ 2)T;

Var(U 7ﬁ§:n_1p 2+ (S @ DT,
and

& 2

ov(vech(X,), Un) — p(Le + Kp)(E @ X)T;,

Then
E (H\/ﬁ(vech(in) —vech(X)) — v/n(U,, — Vech(E))H2> _

2n 1 n

and

lim E (H\f Vech( n) — vech(X)) — /n(U, — VeCh(E))H2> =

n—oo

maZ*—Q Tr [T,(1: + Kp) (S @ X)T)) .

The last term is equal to 0 iff p; = 1/m for all j. This concludes the proof. m

The following corollary follows from Theorem 1 and Lemma 1.

Corollary 1 Suppose that nj/n — 1/m for all j and that ¥y o < co. Then

\/ﬁi(vech(i;J —-vech(E)) £ N(0,D),

where
I'= Tp(Ipz +K,)(E® E)TI’,.

4 ASYMPTOTIC NORMALITY OF ps

The statistics Z, from (3) can be written as Z,, = o(vech(%,)), where for any sym-
metric matrix Apy, is p(vech(A)) = f(g(vech(A))),

2 [(vech(Jp)) vech(A)
QW“MA”_p—1[@%m4»wmmA)_q’

and

1
ﬂ@:im(ﬁfﬁ).
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Theorem 2 Suppose that nj/n — 1/m for all j and that Uy o < co. Then

Vi (Zy — p(vech(E))) £ N(0,7),
where
v = d® (vech(Cy)) Tp(L2 + K,)(E ® E)T;, vech(Cy),
and
1 1
202 [14+(p—1pl(1—p)’

2 2
Cp=——J,— | — I,.
P <p_1+p> v
Proof. Asymptotic normality is direct consequence of the Corollary 1 and the delta
method. As for «v we have

— [V (vech(E))]' T Vip(vech (X)),
where symbol V denotes the gradient of a function. For a symmetric matrix A is
_ (9p(vech(A))\" _ (9f(glvech(4))\" _
Viplvech(4)) = < O(vech(A)) O(vech(A)) B

_ <5f( g(vech(4))) . 39(V60h(A))>/ _
dg(vech(A))  O(vech(A))

_ P <0g(vech(A))
~ 2[1 — g(vech(A))][1 + (p — 1)g(vech(A))] \ d(vech(A))
Let us now compute the last term (the fact that (vech(1p))" vech(A) r(A) will be used)

d(vech(A)) — O(vech(A))
2 [vech(lp)] vech(A)[vech(Jp)]" — [vech( pz]’vech A [vech(Ip)]

)
dg(vech(A)) ) [ 2 <(vech(Jp)) ’Vech 1”

p—1 [(vech(Ip))' vech(A)]
= 2 vec " — (vec n _ glvech(4)) vec "=
- (]0 _ 1) Tr(A) (( h(Jp)) ( h(Ip)) ) Tr(A) ( h(Ip))
1 /
= TI'(A) (VeCh(Dp(A))) ’
where
Dy(A) = —=7, - < +g(vech(A))> I,
Then
Vo (vech(A)) = ! vech(D,(A)) .

2Tr(A)[1 — g(vech(A))][1 + (p — 1)g(vech(A))]
Because g(vech(X)) = p, Tr(X) = po?, and D,(X) = C,, we have

b

Vep(vech(x)) = 2021+ (p—1)pl(1 - p)

vech(C)) .

Then the result for v follows. m



ON UNIFORM CORRELATION STRUCTURE 97

REFERENCES

Ferguson, T. S., U-statistics, Notes for Statistics 200C, 2005.

Hawkins, D. L., Using U statistics to derive the asymptotic distribution of Fisher’s Z
statistic, The American Statistician, Vol. 43, No. 4, 235-237, 1989.

Lehmann, E. L., Elements of Large-Sample Theory, Springer, 1999.

Magnus, J. R. and Neudecker, H., Matrix differential calculus with applications in
statistics and econometrics, John Wiley & Sons, Chichester, 1988.

Zezula, 1., Covariance components estimation in the growth curve model, Statistics
24, 321-330, 1993.

Zezula, 1., Special variance structures in the growth curve model, Journal of multi-
variate analysis, Vol. 97, No. 3, 606-618, 2006.



